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Abst rac t .  The indirect exchange interaction between localized magnetic moments 
embedded in 11-VI semiconductor hosts is theoretically studicd. Based on realistic 
LCAO bands, the indirect exchange is calculated by the perturbation theory. In evalu- 
ating the second-order energy shift, a modified linear andytie tetrahedron method is 
used to perform the double Brillouin zone integration. From our results, two qudita- 
tive conclusions are r e d c d .  First. the i n d i r d  exchange is usually antifermmagnetic 
for the neatest few neighbours. hecoming lerronngnetic a the distance between mag- 
netic ions is increased. Second, the intrinsic cubic ~ymmetry of the semiconductor 
host could induce strong directional dependence of the indiret exchange, and the 
rphericalizat,ion of the matrix element in the Brillouin zone might affect ruhstmtially 
the numerical accuracy of the calculated exchange coupling constant even when the 
band energy is essentially isotropic. 

1. I n t r o d u c t i o n  

Recently there has been considerable interest i n  the magnetic properties of semicon- 
ductors containing a few percent of magnetic ions [I-121. For these diluted magnetic 
semiconductors (DMS) which crystallize in the structure of the non-magnetic semi- 
conductor host (e.g. zinc-blende for Cd,-,Mn,Te), experimental results have shown 
evidence of an antiferromagnetic interaction between MnZt local moments. In the 
high-temperature limit, the behaviour of the magnetic susceptibility can be described 
rather well by the Curie-Weiss law with a negative paramagnetic Curie-Weiss temper- 
ature. In DMS, the magnetic interaction may be mediated by the spin polarization of 
valence band electrons due to their exchange interaction with separated local magnetic 
moments. The spin-polarized Bloch electrons will then cause an indirect interaction 
between two magnetic ions, the so-called indirect exchange interaction. The indirect 
exchange interaction is the complete analogue of the Ruderman-Kittel-Kasuya-Yosida 
(RKKY) interaction [13-151 i n  magnetic alloys. However, while intraband processes are 
involved in polarizing conduction electrons in the RKKY interaction, the polarization 
of valence band electrons in a semiconductor proceeds via interband electron-hole 
excitations. 

The properties of the indirect exchange interaction have been studied in several 
model calculations [16-231. However, most authors have assumed parabolic energy 
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bands and a constant interband exchange matrix element. These assumptions are 
valid only in the immediate vicinity ofband edges. As the polarization process involves 
interband transitions throughout the entire Brillouin zone (BZ), one may question the 
validity of the results which are based on the band edge structure alone. In addition, 
for direct gap semiconductors, the conduction and valence band edges are of different 
symmetry; while one is atomic s-like, the other is p-like. Hence the two band edge 
states are not coupled by the isotropic Coulomb interaction. The interband exchange 
matrix element exists only when the conduction band state contains both s and p 
components when away from the r point. Therefore a very important factor affecting 
the indirect exchange in DMS is the s-p mixing of bands, which is strong only in regions 
of the Bz distant from the I? point. 

In our previous works, the symmetry mixing of bands has been included and the 
hand structures calculated via the k . p as well as semiempirical LCAO (linear com- 
bination of atomic orbitals) method have been used to study the indirect exchange 
interaction in  a series of 11-VI direct gap semiconductors, europium oxide and eu- 
ropium chalcogenides [24-271. We show that the indirect exchange in DMS consists 
of two competing components, one ferromagnetic and one antiferromagnetic, medi- 
ated by electrons occupying different valence bands. While a pair of non-interacting 
bands makes an antiferromagnetic contribution. two bands which have local symmetry 
mixing with each other (e.g. s-p mixing) contribute a net ferromagnetic interaction. 
For interspin distance equal to the next nearest neighbour cation separation (R , )  and 
beyond, the antiferromagnetic part usually dominates the ferromagnetic one. Based 
on the above argument, phenomenological models have been proposed to explain the 
magnetic properties of some DMS such as Pb,-,Mn,Te and Bg,-,Mn,Te [28,29]. 
However, all of our previous models have employed isotropic band structures simu- 
lated only along the r - X  section in the BZ and the BZ is approximated by a sphere 
with radius 2r/R,. Under these assumptions, the symmetry of both the band states 
and the crystal structure is not treated consistently. 

In determining the interband contribution to the indirect exchange, two band 
features are of importance: the energy separation between the initial and the final 
state, and the symmetry of their wavefunctions. The importance of the energy gap is 
obvious because i t  gives the electron-hole excitation energy. The second point needs 
some elaboration. A Bloch wavefunction has two kinds of symmetry: a translational 
symmetry characterized by its wave vector k and a local symmetry usually referred 
to as atomic s- or p-like. As the valence band electrons are polarized by a very 
localized interaction (i.e. their direct exchange with the local moment d electrons), 
the local symmetry of the initial and final states determines whether there is an 
interband exchange coupling between  them. Owing to the translational symmetry, 
the Bloch electron changes its phase from one lattice point to another. Because of this 
phase change, different interband transitions interfere with each other. Hence i t  is the 
combined translational and local symmetries which determine the net contribution 
from a given valence-conduction band pair. 

From the discussion above, it becomes obvious that one needs to know the details 
of the band structure before determining the nature of the indirect exchange. We have 
decided to use the semiempirical LCAO method [30] to simulate the band structure 
of some typical 11-VI direct-gap semiconductors. This method is chosen because not 
only is the local symmetry of a state well represented by an atomic basis set, but also 
the crystal symmetry is reflected in the LCAO band energy and wavefunctions. By 
adopting a semiempirical procedure, we further ensure that the energy gaps and the 
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orbital mixing coefficients obtained are reliable. 
With the non-magnetic band structure known, we treat the polarization of the 

valence band electron due to the MnZ+ local spin by the perturbation theory. In 
evaluating the second-order energy shift of the system, the double BZ integration of 
wavevectors k and k' for the valence and conduction bands is carried out by a modified 
linear analytic tetrahedron method 131-391. In this method, the BZ is divided into a 
large number of tetrahedra, and the double integration over each pair of tetrahedra is 
approximated by the product of the integration of the rapidly oscillating phase and 
the average values of other slowly varying terms, i.e. the interband matrix element 
and the inverse of band energy difference 138,391. The integration of the phase can be 
calculated analytically and the result depends only on the phase values a t  the four ver- 
tices of the tetrahedron. The average of the inverse of band energy difference can also 
be integrated analytically once the band energy is linearly interpolated with respect to 
the energy values a t  the four vertices of the tetrahedron. With the sampling of finite 
energy bands near the energy gap region as the only limitation, the variations of both 
the band energy and band wavefunctions in the realistic BZ are treated explicitly. 

2. Band s t r u c t u r e  

In this section we calculate the non-magnetic band structure of some typical 11-VI 
semiconductors (i.e. CdTe, ZnTe and ZnSe, all w i t h  the r point band edge and the zinc- 
blende structure) by the LCAO method. We consider one conduction band generated 
from the cation ns ( n  = 4 , 5  for Zn, Cd, respectively) orbital and three valence bands 
from the anion three np (n  = 4 , 5  for Se, Te, respectively) orbitals. 

Starting from the atomic picture, one may say that bands are formed due to 
interatomic interactions. Through the nearest-neighbour interaction, a cation atomic 
orbital may mix with an anion orbital i f  they have considerable overlap. On the 
other hand, the next-nearest-neighbours always consist of the same kind of atoms 
and through their interaction, a cation (anion) orbital only mixes with other cation 
(anion) orbitals. In general the LCAO wavefunction of a state in the nth band may be 
expressed as a linear combination of various orbitals as follows. 

where the LCAO basis function I p b )  is a Bloch sum of the corresponding atomic 
orbitals centred either a t  the cation (or anion) sites, i.e. 

and the p summation runs over all orbital symmetries which are mixed into a given 
band. 

To obtain quantitatively the energy E(&)  of a band state and the mixing coeffi- 
cients C,(nb), one has  to solve the eigenvalue equation 

H(k)  1 nk) = E ( n k )  I nk) 
The detailed forms of the matrix representation of the crystal Hamikonian H with 
respect to the LCAO basis functions i n  (2.1) are worked out by Slater and Koster for 
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various crystal structures [30]. For reference, we quote the formula for these matrix 
elements below 

Skinn-Sheng Yu and Ven-Chung Lee 

(p'k' 1 fi  1 pk)  = 6kk, Ceik'(Rjtrr-'r')E,,,(lmn)h,). (2.4) 
J 

where X denotes the atom in the unit cell (cation or anion in the present case) and 
E, + T ~ - V ~ ,  = Ro(l ; tmj+nk) .  Neglectingenergy integrals beyond the NNN (cation- 
cation or anion-anion) interaction, we give in table 1 the matrix representation of 
the crystal Hamiltonian for the zinc-blende structure and a general k in the Bz. As 
can be seen, there are eight energy integrals in the Hamiltonian matrix. We choose 
their values semiempirically to fit several measured energy gap values and also the p 
valence bandwidth. Our calculated energy band structure agrees with the non-local 
pseudopotential results [40,41] in their overall features. The fitted values of these 
energy integrals are given in table 2. 

Table 1. LCAO crystal Hamiltonian malrix elements for the zinc-blende Struclwe. 
The noLalions are the same 85 those of reference 1301. Other elements not shown 
can be obtained by cyclic permutation of {<,q, C} in accord with orbital symmelries 
( x , y , z )  of basis funaions. 

( z / x )  = E,.(OOO)a, t 4Exz( f &O),.cos $(cos$  t m s f )  + 4€,,(0$ $).,,cos! cos$ 

(z/y) = - 4 E = v ( ~ & O ) n O ~ k ~ s i n ~  -4iEz,(O~$). , (cos$ - c o s f ) r i n $  

( = / ~ ) = 4 ~ * ~ ( t t t ) , . ( - c o s f s i n : s i n f  + i s i n f c o s ~ c o s f )  

(s/s) = E,.(OOO),, + 4E,,(k ;o)..(uK $ COS ; f cos f cos 5 t cos f. COS 5 )  

Table 2. Energy integrals (in eV) employed in the LCAO band calculation for CdTe, 
ZnTe, and ZnSe. 

~~~~ 
~~ ~~ 

CdTe ZnTe ZnSe 

Ezz(OOO).. -1 .143 -1.447 -1.105 

E,.($ io),,. 0.062 0.087 0.018 

&,(Oj $),,a 0.162 0.188 0.240 

Ezv(&fO)aa 0.067 0.110 0.092 

Ez3(Oe $).. -0.115 -0.135 -0.227 

E..(fii).. 1.178 1.171 1.343 

E,(000),, 0.715 0.830 1.606 

Eaa( f io).. 0.073 0.131 0.096 

~~ ~ ... , ~.li*Rni..:,LYi, .,.I>, ...., - , , ..,, , , , , , , ,  ... .. . . . . . . . 

I 1  

3. Indirect  exchange interact ion 

For a magnetic ion (e.g. M n 2 t )  well-isolated in a non-magnetic semiconductor host, 
we may assume that the magnetic electrons are very localized. Since their spins tend 
to be parallel to each other by Bund's rule, a total spin Si is now located at the 
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magnetic ion site R,, The local spin Si will magnetically polarize the valence band 
Bloch electrons through the direct exchange interaction between them, inducing the 
latter to make virtual interband transitions. The Bloch electrons polarized by Si will 
then interact with another local spin Si located at R j ,  thus mediating an effective 
spin-spin interaction between Si and Sj.  

Let us assume that the exchange interaction between localized magnetic orbitals 
and Bloch electrons is independent of the magnetic quantum number. Then we may 
sum up the contribution of each individual magnetic orbital to obtain the exchange 
interaction of the entire magnetic ion with Bloch electrons, which now depends on the 
total spin Si. The exchange interaction between the local spin Si and Bloch electrons 
is assumed to take the form 

i 

where U is the Pauli spin operator of the Bloch electron a t  position T ,  and J ( r  - R,) 
is the exchange integral centred at Ri, Because the trace of U is equal to zero, the 
first-order energy shift produced by f i x  vanishes. The second-order energy shift is 

an=\- k') - E(&) 

where E(n'k') and E(nk)  are the energies of the conduction and valence band states 
n'k' and nk respectively; fn,b, and f C r  are the corresponding Fermi distribution 
functions. The k and the 12' summations are confined to the first BZ. For temperatures 
below 200 K, assuming that valence bands are completely filled and conduction bands 
completely empty the approximation for wide gap semiconductors is good. Thus the 
relevant Fermi factor fnk(l - fntb,) is set to 1. 

When the explicit form of H x  is substituted in the above formula, AE@)  can be 
rewritten as an effective Si, Si spin interaction: 

(3.3) 

with 

Since self-energy terms (i.e. those with i = j )  do not concern the magnetic ordering 
of the material, only i # j interacting terms being retained in (3.3). 

Owing to the spin-orbit interaction acting on Bloch electrons, the indirect ex- 
change in (3.3) should include various anisotropic contributions, such as the pseu- 
dodipolar interaction and the antisymmetric Dzialosbinski-Moriya (DM) interaction 
[42-441. If the lack of inversion symmetry for the zinc-blende crystal is neglected, the 
DM interaction, averaged over the sample, is equal to zero and the resulting indirect ex- 
change contains an isotropic term and a symmetric pseudodipolar term. Our previous 
calculation [29] shows that, with the spin-orbit interaction included, the antiferrc- 
magnetic contribution from the higher valence bands still dominates, but its strength 
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is reduced by about 20% due to additional orbital mixing between the conduction and 
the light hole bands by the spin-orbit interaction. The obtained indirect exchange is 
approximately isotropic t o  within an error of less than 2% at  R+j = R,. The deviation 
from isotropic behaviour increases with increasing Rij and is estimated to be about 
20% a t  R,, = 5R,. If the effect of the spin-orbit interaction is neglected, the spin and 
space parts of the band state function are decoupled, i.e. I nku) = Ink) EI 1 U ) ,  thus 
all terms non-diagonal in a,@ vanish, and the energy shift reduces to the isotropic 
Heisenberg form: 

Shinn-Sheng Yu and Ven-Chung Lee 

with the indirect exchange coupling constant I$' rewritten as 

M ( n ' k ' , n k )  el(k ) 

~+ cc . (3.6) I ( q j )  =- -  1 1 2 '  - "  
E(n'k')  - E ( & ' '  

n k p ' k '  
2 

The oscillating factor el(k-k')'R ' 2  arising from the change of phase of Bloch electrons 
over two bin?+ sites is displayed explicitly and the interband exchange matrix element 
M is independent of either of the two magnetic ion sites. Owing to this factor, different 
interband excitations interfere with each other, and the net indirect exchange can be 
obtained only when this interference is calculated explicitly throughout the entire BZ. 
The site-independent matrix element M evaluated with any Mnzt lattice point as the 
origin is explicitly 

where $,,, is the localized magnetic orbital of the magnetic quantum number m and 
$ink denotes the non-magnetic Bloch wavefunction in the n k s t a t e ,  As the ground 
state of the Mil2+ ion is a spherically symmetric 6S state, the integral M may be 
viewed qualitatively as the matrix element of a spherically symmetric local exchange 
operator connecting two interband Bloch states 

Using the LCAO wavefunction in (2.1), the interband matrix element M can be 
expanded as 

M ( n ' k ' , n k )  = N-' CC;(n'k')C,(nk)J,, (3.8) 
,,y 

where we only retain in  each Bloch sum I pk) one atomic orbital centred either a t  the 
magnetic ion site or at each of its four neighbouring sites, since the magnetic orbital 
is very localized and the contributions to the exchange integral from atomic orbitals 
at more distant neighbours are negligible. The Jpy obtained are therefore of the order 
of atomic exchange. Since the exchange operator may be regarded as isotropic, only 
atomic orbitals having the same angular momentum and the same magnetic quantum 
number are connected by the local exchange. That is to say that among the s and 
the p orbitals only the diagonal exchange integrals J,, exist. By reason of symmetry 
all J,, connecting three p orbitals are equal to each other. Thus we only have to 
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Table 3. M:'_,Mn,XvL local exchange parameters J,. and Jpp (in eV) determined 
from experiments. 

J,, 0.4 0.22 0.18 0.26 

Jpp -0.6 -0.88 -1.05 -1.31 

consider two atomic exchange integrals J,, and Jpp, denoting s-d and p-d exchange 
respectively, and we treat them as known parameters in this paper. Values of J ,  and 
Jpp determined from experiments (45-531 for some typical DMS are listed in table 3 
for reference. 

Considering all the above poinbs, the interband exchange matrix element takes the 
general form 

M ( n ' k ' , n k )  = N - '  ~ C ; ( n ' k ' ) C , , ( n k ) J , p  (3.9) 
P 

and 

where Mpu(nk) = C;(nk)C,(nk) depends only on the band quantum number n k .  
For computational convenience, I(Rij)  in  (3.6) is rewritten as the sum of two 

real terms and the double summation of k, k' over the B Z  is converted to the double 
integration via the following two equivalent versions of averaging over the BZ 

(3.11) 

where VB, is the volume of the first BZ and N ,  being the number of states inside the 
BZ, is also equal to the number of unit cells N inside the crystal in (2.2). The indirect 
exchange coupling constant is rewritten in its final form as: 

N2 cos(k' . Rij)/A4(nrk',nk) I? cos(k. R;,) 
E(n'k')  - E ( n k )  I ( R , , ) = - ~ ~ / /  ' 6 2  ,,,", BZ dkdk' 

+ (cos -, sin). (3.12) 

4. Linear analytic tetrahedron method  

In evaluating the double B Z  integration, we use the linear analytic tetrahedron method 
(LATM). In this method, we divide the B Z  into microcells, integrate over the microcell 
analytically, and sum over the contributions from each microcell numerically. Micro- 
cells of tetrahedron geometry are preferred since tetrahedra can make an exact division 
of the BZ and, as will be shown in the appendix, when the integrand exhibits some 
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functional form of a linear function, the contribution from one tetrahedron depends 
only on the values of the linear function at  the vertices, not on the specific shape 
of the tetrahedron, thus rendering the results substantially simpler. In this problem, 
however, a double integration is required and the presence of the phase factor makes 
the situation more complicated. In  the modified version of the LATM, the double inte- 
gration over the 82 is rewritten as a double summation of the double integration over 
pairs of tetrahedron with index t and t', 

Shinn-Sheng Yu and Ven-Chung Lee 

+ (cos -s in) .  (4.1) 

The double integration over each t , t '  tetrahedron pair is approximated by the product 
of the integration of the rapidly oscillating phase and the average values of other 
slowly varying terms, i.e. the interband matrix element and the inverse of band energy 
difference. The advantage of making such a separation is that  the integration of the 
phase over the tetrahedron can be performed analytically. Since the matrix element 
and the inverse of band energy difference are always positive, this approximation is 
good even i f  R,, is large as long as tetrahedra are small enough to account for the 
variation of the matrix element and the inverse of band energy difference throughout 

With the expansion of the matrix element (3.10) being substituted, the indirect 
exchange coupling constant is thus decomposed into components of various orbital 
symmetries 

the BZ. 

W . C  

with index E running over  COS), s(sin) and p , v  over s , z , y , r ;  

where M,,(nt) is the average of M p u ( n k )  over the tetrahedron t ,  AE-'(n't',nt) is 
the average of [E(n'k ' )  - E(nk)]-' over the L ,  t' tetrahedron pair, and F ( t )  and G(t)  
are the integration of cos(k. 4,) and s in(k.  R , j )  over the tetrahedron t respectively. 

The  integration of cos(k. E,,) over one tetrahedron is readily obtained via a linear 
transformalion whose details are described i n  the appendix, and the result depends 
only on the volume of the tetrahedron and the values of k .  R,, at  the four vertices of 
the tetrahedon, as expected: 
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where U,, is the volume of the tetrahedron t ,  and 0, = k, . Rij is the phase value at 
the yth vertex of the tetrahedron t .  When some of the 0,s are equal, one should be 
careful in taking the limit. In particular, note the follGwing cases: 

(i) e, = e,, e, +e,, e, +e4 ,  e, + e, 

(ii) e, = e,, e, = e,, e, # e, 

-(cos02 + cos@,) 2(sinBZ -sine,) + 
(9, - e,), 

F ( t )  = 6u0 

(iii) e, = e, = e, # 0, 

(4.7) 

(iv) e, = e, = e, = e, 

F ( t )  = uo COSO,. (4.9) 

The integration formulae of s in(h.  R i j )  can be obtained in similaz ways or by 
converting ‘cos’ into ‘sin’, ‘sin’ into ‘cos’ and changing the sign of the terms with 
inverse odd power of e in the corresponding cos(k. Ri j )  integration formula. 

The average of the inverse of band energy difference over the tetrahedron pair t ,  t‘ 
is by definition 

and the integration can be carried out with the band energies being linearly interpo- 
lated in the tetrahedron t and t ‘ .  Since for 11-VI semiconductors under investigation 
the dispersion of the conduction band is much smaller, it is sufficient to approximate 
the second integration by the average of the first integration at  the four vertices of the 
tetrahedron t’. 

As for the average of the matrix element over one tetrahedron, we directly use the 
value at  the centre of the tetrahedron, rather than the average of values a t  the four 
vertices in order to avoid highly symmetrical points in the Bz, for the eigenenergies at 
these points are degenerate and the corresponding eigenfunctions are thus not uniquely 
defined, which may cause difficulties in the numerical scheme. If t.he density of mesh 
is fine enough, the variation of the matrix element inside the tetrahedron should be 
nearly linear and its average is thus  well approximated by its value a t  the centre of 
the tetrahedron. 
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Since AE-'( n'f', nt) with 1' and t taken from any of *t' and *t respectively are all 
equal, we may first sum M;,(n't')F(t') over *f' and sum M,,,(nt)F(t) over *t, thus 
contracting the double summation o f t ,  1' into the irreducible part of the BZ: 

(4.11) 

where *f indicates the set of tetrahedra derived from the tetrahedron 1 by applying 
on it the symmetry operations of the point group of the crystal. 

Since LCAO basis orbitals have definite transformation properties under the point 
group operations of the crystal, the various orbital symmetry components in (4.2) of 
the indirect exchange coupling constant should also exhibit related crystal symmetry. 
For example, if Rij = (R=,  R,, R,) is changed to its rotated point, say (Rz,R=,Ry), 
then the Is$ component remains invariant while {I,,,I,,,I,,}, {I,,,I, , I z z } ,  
and {Iy~,ICz,I~,} components are changed to {182 ,1s=,  Is,}, {I,, ,I, , ,I, ,~, and 
{i,,, I,,, I z 2 ]  components respectively. Similarity holds if Rij is changed to its 
mirror-reflected point, e.g. (Rr ,  Rr, R,). In summary, I,, transforms like 1, and 
{Iaz,Isy,I,z}, {Izr, Iyv,Z2a], and { I y 2 , 1 c z ,  In,) transform like { z , g , z ] .  This implies 
that  I(Rij)  for all structurally equivalent Rij are equal to each other. All the cal- 
culated numerical data of the components of the indirect exchange coupling constant 
confirm these transformation properties. 

The double BZ integration program is tested in tn'o ways via the following well 
known relation: 

(4.12) 

First, the integration of (4.12) is identically equal to zero for any lattice vector R,j 
except R, = 0. Second, if R,j is replaced by some non-lattice vector R, the integra- 
tion is generally not equal to zero and should be independent of the total number of 
tetrahedra established i n  the BZ since the integration formulae of the phase (4.5)-(4.9) 
are cxact. Calculated ] ( I t i j )  for Cd,-,Mn,Te, Zn,-,Mn,Te, and Zn,-,Mn,Se up to 
R,, = 3R, using a mesh of 18000 tetrahedra establislied in the BZ are listed in table 4. 

5. Discussions 

Comparing our present results with those obtained previously, we see that even some 
of the qualitative features are changed. The calculated indirect exchange coupling 
constant shows that the indirect exchange is usually antiferromagnetic for the nearest 
few neighbours, but eventually turns to ferromagnetic as the distance between mag- 
netic ions is increased. Furthermore, there is a strong directional dependence in the 
obtained indirect exchange coupling constant, leading to the result that the magnitude 
of the indirect exchange coupling constant for the second, third, and fourth neighbours 
varies in the reverse order of the separation distance of magnetic ions. This is because 
the second nearest neighbour, which lies in a highly symmetrical direction of the host 
crystal, would force lhe cancellation of all of the orbital symmetry cross terms except 
oue. say I:, if RZj is along [IOO], in the components of the indirect exchange coupling 
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Table 4. Calculated M:L,Mn,Xvl indirect exchange coupling constants I(iC,,) (in 
K) Cor the nth ne-t neighbours. 

n % I 5  Cd,-,Mn,Te Znl-.Mn,Te Znl-,Mn,Se 

1 ( $ $ . O )  11.1 17.1 18.7 
2 (1,0,0) 0.0621 -0,0928 -0.208 

4 (1,LO) 0.723 0.820 1.10 

5 (5.2. 3 0) -0.0445 -0.0486 -0,0819 

3 (1, ;, f )  0.270 0.240 0.226 

6 (1.1,l) -0.140 -0.129 -0.207 

7 ( $ * I , ; ,  - 0.0 2 7 9 -0,0305 -0.0550 

8 (2,0, 0) -0.0211 -0.0250 -0.0412 

9 (j,;.O) -0,0108 -0.0164 -0.0277 

10 (2,&?&) 0.0338 0.0341 0.0448 

12 ( ; , ; ,I ,  -0.0363 -0.0382 -0.0631 
13 (2.1,1) -0.00453 -0.00732 -0.0130 

14 (;,&*o, -0.0187 -0.0175 -0.0278 

15 (2 ,  j, f )  0.000404 -0.00184 -0.00402 

16 ( 4 , 1 ,  ;) -0.00442 -0.00437 -0.00705 
17 (2,2*0) 0.00483 0.00423 0.00612 
18 -0.000506 -0.000759 -0.00131 

19 (2 ,  ;. ;) -0.0289 -0.0267 -0.0425 
20 (3,0,0) -0.0136 -0.0140 -0.0225 

11 ( 2 , 1 > 0 )  -0.00110 -0.00541 -0.0102 

constant. This can be readily shown by summing M,,(nt)F(t)  and M,,(nt)G(t) over 
rt explicitly. Note that the same argument still remains true in the central region 
of the BZ where the band energy is essentially isotropic. We thus conclude that it is 
the intrinsic cubic symmetry of the band wavefunction, not the slightly anisotropic 
band energy that induces the strong directional dependence, in the indirect exchange 
between magnetic ions in DMS. 

Now, we compare our theoretical calculation with experimental results. At high 
temperatures, the DC magnetic susceptibility x for DMS can be approximated by the 
Curie-Weiss law 

x=- 
(T - 0) 

where C is the Curie constant, and 0, being the paramagnetic Curie-Weiss tempera- 
ture, can be expressed in terms of the exchange coupling constant I(Rij)  as follows: 

in which the summation over i and j runs over the actual positions of magnetic ions, 
A', is the total number of magnetic ions, and the overbar denotes configuration aver- 
age. A quantitative analysis of the magnetic properties of DMS requires detailed infor- 
mation about the distribution of magnetic ions throughout the host crystal. However, 
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for Cd,-,Mn,Te, Zn,-,Mn,Te, and Znl-,Mn,Se, experimental results [IO, 111 show 
that 0(z) can be well approximated by 0(z) = 0,z, which implies that a completely 
random distribution of Mn2+ ions in the host crystal is a reasonable assumption. 
Under this assumption, we get 
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(5.3) 

and summation over j now runs over all cation sites which forms an FCC lattice. 
Though the lattice sum of I ( i Z i j )  can be directly obtained from the p = 0 component 
of the Fourier expansion of I(Rij) ,  we would like to point out that the dilution of 
magnetic impurities in various polar semiconductors is not always in a random sense 
as those mentioned above. For example, experimental investigations of the magnetic 
properties of Pb,-,Mn,Te indicate that the formation of magnetic ion clusters in 
which the clusters consisting of three Mna+ ions predominate in the composition range 
z < 1% s e e m  to be a better assumption [3], in which case calculating I(R,j)  in real 
space is necessary. Since the indirect exchange between two magnetic ions separated 
by any lattice vector can be calculated, the lattice sum in (5.3) can be carried out 
explicitly. With the total spin of the MnZt ion S Y %, the theoretical values of 0, 
for Cd,-,bfn,Te, Zn,-,Mn,Te, and Zn,-,Mn,Te are -415 K,  -623 K, and -673 K 
respectively, and are compared with those obtained from experimental results, namely 
- 4 7 0 f 3 4  K,  -831 i 6 3  K, and -956k50 K respectively [11,12]. 

Larson and co-workers, using elaborated fourth-order perturbation theory, estab- 
lish the dominance of superexchange in the short-range region of the magnetic in- 
teractions in DMS [54-561. However, the indirect exchange (Bloembergen-Rowland 
interactions) might not be neglected. Besides, in the BZ integration they use the ma- 
trix element along F-X and then make the isotropic approximation. For Rij along 
[loo], this would result in the inclusion of orbital symmetry cross terms which should 
mutually cancel out altogether (with the exception of one) based on purely symmet- 
rical arguments. (More explicitly, the relevant matrix element IvN(nk)( , in our 
notation, is proportional to I c,(nk)(’.  or f i i j  along [IOO], terms contain- 

ing C;(nk)C,(nk) cos(k. R i j )  or C;(nk)C,(nk)sin(k R i j )  with p # Y are identi- 
cally equal to zero except C;(rtk)C,(nk)sin(k. Ri j )  and its complex conjugate after 
performing summation over dq as a direct result of the transformation property of 
C,(nk).) Since orbital symmetry cross terms are of the same order of magnitude 
as diagonal terms, making isotropic approximation might affect substantially the nu- 
merical accuracy of the calculated exchange coupling constant. For Rij along other 
directions, this might also have large effect since the cubic symmetry of the crystal is 
still not correctly reflected. 

Recently, there have been some experiments [I21 performed to test whether the 
underlying mechanism of the magnetic interaction in DMS depends on the energy 
gap of the host crystal. I t  was shown that the measured Curie-Weiss temperatures 
for Hg,,,,Mn,,,,Te and Hgo,,Cd,,,,Mn,,,,Te are practically coincident, despite the 
drastic difference between their energy gaps: -0.13 and 0.02 eV for each of the two 
alloys. Since the indirect exchange is mediated by the virtual interband electron-hole 
excitations, we might intuitively expect that this mechanism should be sensitive to 
the change in the magnitude of the energy gap, especially near the zero-gap region. 
We suggest, however, that with our indirect exchange mechanism the same qualitative 

2 .  

P = = , Y , Z  



Indirect ezchange iniemction i n  diluied magnetic semiconductors 2973 

conclusion can be reached after detailed analysis. As stressed a t  the beginning of this 
paper, the virtual transition across the energy gap is forbidden due to the contradiction 
of the symmetry of band wavefunctions. The matrix element thus vanishes at r and 
remains small in the neighbourhood of r. In addition, the density of states is also 
zero at  r and remains small near r. These make the contribution to the indirect 
exchange mainly from virtual transitions in portions of the Bz away from r where 
the orbital symmetry mixing is strong and the excitation energy is not so small. 
The sensitivity of energy gap dependence is thus reduced. Furthermore, since the 
local exchange parameter squared J& in Cd,-,Mn,Te is about three times larger 
than that in Hg,-,Mn,Te, the adulteration of Cdl-,Mn,Te in Hgl-,Mn,Te would 
make the effective J& become larger. These two effects mutually compensate, with 
the result that the indirect exchange does not depend on the forbidden energy gap 
appreciably. Similar arguments can be applied to the experimental results ofother DMS 
samples provided. The concentration-normalized Curie-Weiss temperatures 0, for 
Cdl-,Mn,Te, Zn,-,Mn,Te, and Zn,-,Mn,Te investigated above also do not exhibit 
the apparent energy gap correlation. 
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Appendix 

In this section, we show that when the integrand exhibits some functional form of a 
linear function f ( k )  (e.g. l/f(k) or cos[f(k)]) ,  the result of the integration over a 
tetrahedron depends only on the values of f ( k )  at  the four vertices of the tetrahedron, 
not on the specific shape of the tetrahedron. 

Consider I / f (k) .  taking the integration of the inverse of band energy difference as 
an example. First, we perform a linear transformation to change integration variables 
from k to {+,y,z) via 

k = (kl - k 4 ) r  + (k, - k,)y + (k3 - k4)z + k, (AI)  

with ki being the coordinate of the i th vertex of the tetrahedron. Under this trans- 
formation, the integration domain becomes the tetrahedron with (000), (loo), (010) 
and (001) as its four vertices. When the band energy E ( k )  is linearly interpolated 
with respect to the four band energies a t  the vertices of the tetrahedron, E ( k )  can be 
expanded to obtain its dependence on the new integration variables 

E(k) = ( E ,  - E~)z + ( E ,  - E 4 ) y  t (E3 - E+)z + E4 

with Ed = E ( k z ) .  Next, we set V, = E(k$) - E,. The integration of the inverse of the 
linearized band energy difference is thus straightforward: 
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where 6u0, being six times the volume of the tetrahedron, is the Jacobian of the 
transformation of variables. 

The integration of cos[f(k)] with f(k) = k . R can be similarly carried out. We 
rewrite k as in ( A l ) ,  and thus k .  R = (9, - 0 , ) x t  (9, - 9,)y t (9, - 9,)r t 9, with 
9; = k; - R. The integration of cos(B. R) is also straightforward: 

Skinn-Skeng Yu and Ven-Chung Lee 

When some ais become degenerate (e.g. 9, = g4), we obtain the corresponding formula 
by integrating the function cos[(9? - 8,)y + (8, - 0,)z  + a,], rather than taking the 
limit directly from the integratioii formula for the non-degenerate case. 
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